Member-only story
4 Python Coding Errors That Are Killing Your Speed
2 min readAug 31, 2024
1. Using Inefficient Data Structures
Error: Using lists where sets or dictionaries would be more efficient (e.g., membership checks).
Fix: Replace lists with sets for faster membership testing or dictionaries for faster key lookups.
# Inefficient
my_list = [1, 2, 3, 4, 5]
item = 3
if item in my_list:
print("Item found")
# Efficient
my_set = {1, 2, 3, 4, 5}
item = 3
if item in my_set:
print("Item found")
Item found
Item found
2. Excessive Function Calls
Error: Calling functions repeatedly in performance-critical code, especially in loops.
Fix: Use local variables or inline code where function calls are unnecessary.
# Inefficient
def process_item(item):
print(item)
my_list = [1, 2, 3, 4, 5]
for i in range(len(my_list)):
process_item(my_list[i])
# Efficient
def process_item(item):
print(item)
items = [1, 2, 3, 4, 5]
for item in items:
process_item(item)
1
2
3
4
5
1
2
3
4
5